Resisting Adversarial Attacks Using Gaussian Mixture Variational Autoencoders

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Images for Variational Autoencoders

We investigate adversarial attacks for autoencoders. We propose a procedure that distorts the input image to mislead the autoencoder in reconstructing a completely different target image. We attack the internal latent representations, attempting to make the adversarial input produce an internal representation as similar as possible as the target’s. We find that autoencoders are much more robust...

متن کامل

Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders

We study a variant of the variational autoencoder model (VAE) with a Gaussian mixture as a prior distribution, with the goal of performing unsupervised clustering through deep generative models. We observe that the known problem of over-regularisation that has been shown to arise in regular VAEs also manifests itself in our model and leads to cluster degeneracy. We show that a heuristic called ...

متن کامل

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference mo...

متن کامل

Supplementary Material for Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

In the main text we derived Adversarial Variational Bayes (AVB) and demonstrated its usefulness both for black-box Variational Inference and for learning latent variable models. This document contains proofs that were omitted in the main text as well as some further details about the experiments and additional results.

متن کامل

Gaussian Copula Variational Autoencoders for Mixed Data

The variational autoencoder (VAE) is a generative model with continuous latent variables where a pair of probabilistic encoder (bottom-up) and decoder (topdown) is jointly learned by stochastic gradient variational Bayes. We first elaborate Gaussian VAE, approximating the local covariance matrix of the decoder as an outer product of the principal direction at a position determined by a sample d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.3301541